Gleb Finkelstein
Professor
Physics Department
Duke University

Professional preparation
1998-2000, Postdoctoral associate in Ashoori's group,
Massachusetts Institute of Technology.

1991-1998, M.Sc and Ph.D.
Department of Condensed Matter Physics,
Weizmann Institute of Science, Israel

1987-1991, B.Sc.
Department of Physical and Quantum Electronics
Moscow Institute of Physics and Technology, Russia


Academic honors
NSF Faculty Early Career Development (CAREER) Award (2003).
Wolf Distinction Fellowship (1998).
Daniel Brener Memorial Prize for Ph.D. studies (1996).
Distinction Prize for M.Sc. studies (1993).


Publications

Observation of Majorana quantum critical behaviour in a resonant level coupled to a dissipative environment,  (link to the journal)
H. Mebrahtu, I. Borzenets, H. Zheng, Y.V. Bomze, A.I. Smirnov, S. Florens, H.U. Baranger and G. Finkelstein, 
Nature Physics 9, p. 732 (2013).

Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures,
I. Borzenets, U.C. Coskun, H. Mebrahtu, Y.V. Bomze, A.I. Smirnov, and G. Finkelstein,
Physical Review Letters 111, 027001 (2013).
        
Nonequilibrium quantum transport through a dissipative resonant level,
C.-H. Chung, K. Le Hur, G. Finkelstein, M. Vojta, and Peter Woelfle,
Physical Review B 87, 245310 (2013).

Observation of Unitary Conductance for Resonant Tunneling with Dissipation,
H. Mebrahtu, I. Borzenets, Yu. Bomze, and G. Finkelstein
Journal of Physics: Conference Series 400, 042007 (2012).

Intracellular Neural Recording with Pure Carbon Nanotube Probes,
I. Yoon, K. Hamaguchi, I.V. Borzenets, G. Finkelstein, R. Mooney, B.R. Donald,
PLoS ONE 8, e65715 (2013).

Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads, (link to the journal)
H. Mebrahtu, I. Borzenets, D.E. Liu, H. Zheng, Y.V. Bomze, A.I. Smirnov, H.U. Baranger and G. Finkelstein,
Nature 488, p. 61 (2012).     
       
Pb-graphene-Pb Josephson junctions: characterization in magnetic field,
I.V. Borzenets, U.C. Coskun, H. Mebrahtu, and G. Finkelstein,
IEEE transactions on Applied Superconductivity (2012).

Ultra-sharp metal and nanotube-based probes for applications in scanning microscopy and neural recording,
I.V. Borzenets, I. Yoon, M.W. Prior, B.R. Donald, R.D. Mooney, and G. Finkelstein 
Journal of Applied Physics 111, 074703 (2012). 

Phase Diffusion in Graphene-Based Josephson Junctions,
I.V. Borzenets, U.C. Coskun, S.J. Jones and G. Finkelstein, 
Physical Review Letters 107, 137005 (2011).

Retrapping current, self-heating, and hysteretic current-voltage characteristics in ultranarrow superconducting aluminum nanowires,
P. Li, P.M. Wu, Y. Bomze, I.V. Borzenets, G. Finkelstein and A.M. Chang,
Physical Review B 84, 184508 (2011).

Switching Currents Limited by Single Phase Slips in One-Dimensional Superconducting Aluminum Nanowires,
P. Li, P.M. Wu, Y. Bomze, I.V. Borzenets, G. Finkelstein and A.M. Chang, 
Physical Review Letters 107, 137004 (2011).

Connecting the Nanodots: Programmable Nanofabrication of Fused Metal Shapes on DNA Templates, 
M. Pilo-Pais, S. Goldberg, E. Samano, T.H. LaBean and G. Finkelstein, 
Nano Letters 11, p. 3489-3492 (2011).

Self-assembling DNA templates for programmed artificial biomineralization, 
E.C. Samano, M. Pilo-Pais, S. Goldberg, B.N. Vogen, G. Finkelstein and T.H. LaBean, 
Soft Matter 7, p. 3240 (2011).

Two-stage Kondo effect and Kondo-box level spectroscopy in a carbon nanotube,
Yu. Bomze, I. Borzenets, H. Mebrahtu, A. Makarovski, and G. Finkelstein
Physical Review B 82, p. 161411R (2010). 

Resonant tunneling in a dissipative environment,
Yu. Bomze, H. Mebrahtu, I. Borzenets, A. Makarovski, and G. Finkelstein
Physical Review B 79, p. 241402R (2009). 

Dependence of transport through carbon nanotubes on local Coulomb potential,
A.A. Zhukov and G. Finkelstein
Letters to the Journal of Expt. and Theor. Physic. 236 (2009)

Chemical patterning of silicon dioxide substrates for selective deposition of gold nanoparticles and fabrication of single-electron transistors,
U.C. Coskun, H. Mebrahtu, P. Huang, J. Huang, A. Biasco, A. Makarovski, A. Lazarides, T. LaBean, and G. Finkelstein,
Applied Physics Letters 93, p. 123101 (2008).

Zero-Bias Conductance in Carbon Nanotube Quantum Dots,
F.B. Anders, D.E. Logan, M.R. Galpin, and G. Finkelstein,
Physical Review Letters 100, p. 086809 (2008).

Stepwise Self-Assembly of DNA Tile Lattices Using dsDNA Bridges,
S.H. Park, G. Finkelstein, and T.H. Labean,
Journal of the American Chemical Society 130, p. 40-41 (2008).

SU(4) Mixed Valence Regime in Carbon Nanotube Quantum Dots,    
A. Makarovski, and G. Finkelstein,     
Physica B 403, p. 1555 (2008).    
  
Giant Zero-Bias Conductance and Multiple Andreev Reflections in Single-Wall Carbon Nanotubes with Superconducting Contacts,
A. Makarovski, J. Liu, and G. Finkelstein,
Submitted to PRB.

Four-Probe Measurements of Carbon Nanotubes with Narrow Metal Contacts,    
A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein,    
Physical Review B 76, R161405 (2007). 

Evolution of Transport Regimes in Carbon Nanotube Quantum Dots,    
A. Makarovski, J. Liu, and G. Finkelstein,     
Physical Review Letters 99, 066801 (2007).
  
SU(4) and SU(2) Kondo Effects in Carbon Nanotube Quantum Dots,    
A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein,     
Physical Review B 75, R241407 (2007).    

Low-Temperature Conductive Tip Atomic Force Microscope for Carbon Nanotube Probing and Manipulation,
M. Prior, A. Makarovski and G. Finkelstein,  
Appl. Phys. Lett. 91, 053112 (2007).

Optimized fabrication and electrical analysis of silver nanowires templated on DNA molecules,
S.H. Park, M.W. Prior, T.H. LaBean and G. Finkelstein,   
Applied Physics Letters 89, p. 033901 (2006).

Persistent orbital degeneracy in carbon nanotubes,
A. Makarovski, L. An, J. Liu and G. Finkelstein,
Physical Review B 74, 155431 (2006).

Three-Helix Bundle DNA Tiles Self-Assemble into 2D Lattice or 1D Templates for Silver Nanowires,
S.H. Park, R. Barish, H. Li, J.H. Reif, G. Finkelstein, H. Yan, and T.H. LaBean,
Nano Letters 5, p. 693 (2005).

Electronic nanostructures templated on self-assembled DNA scaffolds.
S.H. Park, H. Yan,  J.H. Reif, T.H. LaBean, and G. Finkelstein,
Nanotechnology 15, p. S525-S527 (2004).

DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires.
H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean,
Science 301, p. 1882 (2003).

Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor.
B. Zheng, C. Lu, G.Gu, A. Makarovski, G. Finkelstein and J. Liu,
Nano Letters 2, p. 895-898 (2002).

Modeling subsurface charge accumulation images of a quantum Hall liquid.
S.H. Tessmer, G. Finkelstein, P.I. Glicofridis, and R.C. Ashoori,
Physical Review B 66, p. 125308 (2002).

Determination of the Resistance across Incompressible Strips through Imaging of Charge Motion.
P.I. Glicofridis, G. Finkelstein, R.C. Ashoori and M. Shayegan,
Physical Review B 65, p. R121312 (2002).

Fate of Spin Doublets in Quantum Dot with Many Interacting Electrons.
M. Brodsky, G. Finkelstein, R.C. Ashoori, L.N. Pfeiffer and K.W. West, unpublished.  

Topographic Mapping of the Quantum Hall Liquid Using a Few-Electron Bubble.
G. Finkelstein, P.I. Glicofridis, R.C. Ashoori and M. Shayegan,
Science 289, p. 90 (2000).

Imaging of Low- Compressibility Strips in the Quantum Hall Liquid.
G. Finkelstein, P.I. Glicofridis, S.H. Tessmer, R.C. Ashoori and M. R. Melloch,
Physical Review B 61, p. R16323 (2000).

Imaging the Low Compressibility Strips Formed by the Quantum Hall Liquid in a Smooth Potential,    
G. Finkelstein, P.I. Glicofridis, S.H. Tessmer, R.C. Ashoori and M.R. Melloch,   
Physica E 6, p. 251 (2000).   

Comparative study of the negatively and positively charged excitons in GaAs quantum wells
S. Glasberg, G. Finkelstein, H. Shtrikman and I. Bar-Joseph,
Physical Review B 59, p. R10425 (1999).

V. Ciulin, J-D. Ganiere, S. Haacke, B. Deveaud, G. Finkelstein, V. Umansky and I. Bar-Joseph, Physica B256-258, p. 466 (1998).

Charged exciton dynamics in GaAs quantum wells
G. Finkelstein, V. Umansky, I. Bar-Joseph, V. Ciulin, S. Haacke, J.-D. Ganier and B. Deveaud,
Physical Review B 58, p. 12637 (1998).

G. Finkelstein, H. Shtrikman and I. Bar-Joseph, Physica B249-251, p. 575 (1998).

G. Finkelstein, H. Shtrikman and I. Bar-Joseph, Physics-Uspekhi 41, p. 112 (1998).

I. Bar-Joseph and G. Finkelstein, Phys. Conf. Ser. 155, p. 711 (1997).

Mechanism of shakeup processes in the photoluminescence of a two-dimensional electron gas at high magnetic fields
G. Finkelstein, H. Shtrikman and I. Bar-Joseph,
Physical Review B 56, p. 10326 (1997).

G. Finkelstein, H. Shtrikman and I. Bar-Joseph, The Physics of Semiconductors, p. 2331, World Scientific (1996).

G. Finkelstein, H. Shtrikman and I. Bar-Joseph, The Physics of Semiconductors, p. 2135, World Scientific (1996).

Shakeup processes in the recombination spectra of negatively charged excitons 
G. Finkelstein, H. Shtrikman and I. Bar-Joseph,
Physical Review B 53, p. 12593 (1996).

Negatively and positively charged excitons in GaAs/AlGaAs quantum wells 
G. Finkelstein, H. Shtrikman and I. Bar-Joseph, 
Physical Review B 53, p. R1709 (1996).

G. Finkelstein, H. Shtrikman and I. Bar-Joseph, Surface Science 361/362, p. 357 (1996).

G. Finkelstein, H. Shtrikman and I. Bar-Joseph, The Physics of Semiconductors, p. 1428, World Scientific (1995).

Optical Spectroscopy of a Two-dimensional Electron Gas Near the Metal-Insulator Transition
G. Finkelstein, H. Shtrikman and I. Bar-Joseph,
Physical Review Letters 74, p. 976 (1995).

G. Finkelstein and I. Bar-Joseph, Il Nouvo Cimento 17D, p. 1239 (1995).

I. Bar-Joseph, G. Finkelstein, S. Bar-Ad, H. Shtrikman and Y. Levinson, Phys. Stat. Sol. B188, p. 457 (1995).

Biexcitons in short-pulse optical experiments in strong magnetic fields in GaAs quantum wells
S. Bar-Ad, I. Bar-Joseph, G. Finkelstein and Y. Levinson,
Physical Review B 50, p. 18375 (1994).

Biexcitonic effects in transient nonlinear optical experiments in quantum wells
G. Finkelstein, S. Bar-Ad, O. Carmel, I. Bar-Joseph and Y. Levinson,
Physical Review B 47, p. 12964 (1993).


Main results before Duke

Postdoc (MIT)

Scanned probing of Quanum Hall
& Mobile Quantum Dot

Graduate studies (Weizmann)

Charged Excitons