Corey S. O'Hern
Yale University

3:30 PM, Wednesday September 26th, 2012, Rm 128

Soft and biological materials: From sand to proteins to cells

I will describe two simple models that incorporate only hard-sphere and geometrical constraints, yet provide quantitatively accurate predictions for the structural and mechanical properties of frictional packings of granular media and proteins. We first model static friction between grains by considering nominally spherical particles with periodically spaced asperities on the surface of the grains. This model captures the dependence of the average packing fraction and number of interparticle contacts on the static friction coefficient obtained from experiments, and has significant advantages over other models. Second, in the spirit of the Ramachandran map for the backbone dihedral angles of proteins, we develop a model for nonpolar amino acids that allows us to predict the allowed conformations of sidechain dihedral angles. Our predictions are quantitatively similar to the sidechain dihedral angle distributions obtained from known crystal structures. These two examples emphasize the power of simple physical models, which are able to predict important properties of soft and biological materials.

Faculty Host: Bob Behringer

Coffee and cookies before the presentation at 3:15 pm, and refreshments after the presentation will both be served in Room 128.