Subwavelength Sensing Using Nonlinear Feedback in a Wave-Chaotic Cavity


Seth Cohen

Here, I describe a new sensing technique for resolving the position of a subwavelength scatterer (< lambda) with vastly subwavelength resolution (< < lambda). My approach combines two separate fields of scientific inquiry: time-delayed nonlinear feedback and wave chaos. In typical time-delayed nonlinear feedback systems, the output of a nonlinear device is delayed and fed back to its input. In my experiment, the output of a radio-frequency (lambda~15 cm) nonlinear circuit is injected into a complex scattering environment known as a wave-chaotic cavity. Inside the cavity, the field interacts with a subwavelength dielectric object from all sides, and a portion of the scattered waves are coupled out of the cavity, amplified, and fed back to the input of the nonlinear circuit. The resulting closed-feedback loop generates its own radio-frequency illumination field (> 1 GHz), which contains multiple wavelengths and is sensitive to location of the scattering object. Using the dynamical changes in the illumination field, I demonstrate subwavelength position-sensing of the scatterer’s location in the cavity with a two-dimensional resolution of lambda/300.


Back to seminar 2012