Mathematical Methods of Physics (PHY 301)

Sample lecture schedule

(based on 25 lectures each of duration 75 minutes)
  • Lecture 1: Probability 1 – Probability Distributions
  • Lecture 2: Probability 2 – Generating Functions and the Central Limit Theorem
  • Lecture 3: Probability 3 – Stochastic Processes
  • Lecture 4: Complex Variables 1 – Analytic Functions
  • Lecture 5: Complex Variables 2 – Complex Integrals
  • Lecture 6: Complex Variables 3 – Residues and Contour Integration
  • Lecture 7: Complex Variables 4 – Contour Integration
  • Lecture 8: Asymptotic Expansions
  • Lecture 9: Group Theory 1 – Definitions, examples, applications
  • Lecture 10: Group Theory 2 – Representations and Properties
  • Lecture 11: Group Theory 3 – Characters, Product Reps and Clebsch-Gordan coefficients
  • Lecture 12: Group Theory 4 – Irreducible Representations and Irreducible Tensors, Wigner-Eckart
  • Lecture 13: Fourier Transforms and Delta Functions
  • Lecture 14: Convolution, Correlation, and Power Spectrum Density
  • Lecture 15: ODEs 1 – Exact Solutions
  • Lecture 16: ODEs 2 – Series Solutions – Legendre polynomials and functions
  • Lecture 17: ODEs 3 – Series Solutions – Frobenius method and Bessel functions
  • Lecture 18: ODEs 4 – Qualitative Methods
  • Lecture 19: ODEs 5 – Qualitative Methods and Numerical Methods
  • Lecture 20: Green's Functions (1D)
  • Lecture 21: Eigenfunctions and Orthogonal Functions
  • Lecture 22: Sturm-Liouville Theory
  • Lecture 23: PDEs 1 – Separation of Variables and Cylindrical Coordinates (Bessel)
  • Lecture 24: PDE 2 – Spherical Coordinates (Legendre and Spherical Harmonics)
  • Lecture 25: PDE 3– Green's Functions and Boundary Problems in 3D
Webmaster: SCH
Copyright © 2009 Duke University