Stephen W. Teitsworth

Associate Professor

Director of Graduate Studies

089 Physics
Campus Box: 
(919) 660-2560
(919) 660-2525


Steering most probable escape paths by varying relative noise intensities.
Physical review letters (2014)

Measurement of anomalous scaling behavior associated with noise-induced current switching in a tunnel diode

Dependence of switching path distributions on relative noise intensities in a model of electrical conduction in a tunnel diode circuit

Steering Most Probable Escape Paths by Varying Relative Noise Intensities
Physical Review Letters (2014)

On the Origin of Power-Law Probability Distributions Associated with Noise-Induced Current Switching in Semiconductor Superlattices
to be submitted to Physical Review B (2014)

Steering most probable escape paths by varying relative noise intensities

Shot Noise Amplification in Weakly-Coupled Semiconductor Superlattices

Rare transition events in non-equilibrium systems with state-dependent noise: application to stochastic current switching in semiconductor superlattices

Noise-Induced Current Switching in Semiconductor Superlattices: Observation of Nonexponential Kinetics in a High-Dimensional System
Physical Review Letters (2012)

Prof. Stephen W. Teitsworth's research centers on experimental, computational, and theoretical studies of deterministic and stochastic nonlinear electronic transport in nanoscale systems. Three particular areas of current interest are: 1) stochastic nonlinear electronic transport phenomena in semiconductor superlattices and tunnel diode arrays; 2) complex bifurcations associated with the deterministic dynamics of electronic transport in negative differential resistance systems; and 3) strategies for stabilizing negative differential resistance systems against the formation of space-charge waves.

Ph.D. - Harvard University
A.M. - Harvard University
BS - Stanford University

Controllable bifurcation processes in undoped, photoexcited GaAs/AlAs superlattices
In Proceedings of the 5th experimental chaos conference edited by M. Ding et al.. ; : .

Quantum chaos effects in mechanical wave systems
In Proceedings of the 16th Sitges conference edited by D. Reguera et al.. ; : .

1999 Traditional Fulbright Scholarship, Council for International Exchange of Scholars