Professional preparation
1998-2000, Postdoctoral associate in Ashoori's group,
Massachusetts
Institute of Technology.
1991-1998, M.Sc and Ph.D.
Department
of
Condensed Matter Physics,
Weizmann
Institute of Science, Israel
1987-1991, B.Sc.
Department of Physical and Quantum Electronics
Moscow Institute of Physics and Technology, Russia
Academic honors
NSF Faculty Early Career Development (CAREER) Award (2003).
Wolf Distinction Fellowship (1998).
Daniel Brener Memorial Prize for Ph.D. studies (1996).
Distinction Prize for M.Sc. studies (1993).
Publications
Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads, (link to the journal website)
H. Mebrahtu, I. Borzenets, D.E. Liu, H. Zheng, Y.V. Bomze, A.I. Smirnov, H.U. Baranger and G. Finkelstein,
Nature 488, p. 61 (2012).
Pb-graphene-Pb Josephson junctions: characterization in magnetic field,
I.V. Borzenets, U.C. Coskun, H. Mebrahtu, and G. Finkelstein,
IEEE transactions on Applied Superconductivity (2012).
Ultra-sharp metal and nanotube-based probes for applications in scanning microscopy and neural recording,
I.V. Borzenets, I. Yoon, M.W. Prior, B.R. Donald, R.D. Mooney, and G. Finkelstein
Journal of Applied Physics 111, 074703 (2012).
Phase Diffusion in Graphene-Based Josephson Junctions,
I.V. Borzenets, U.C. Coskun, S.J. Jones and G. Finkelstein,
Physical Review Letters 107, 137005 (2011).
Switching Currents Limited by Single Phase Slips in
One-Dimensional Superconducting Aluminum Nanowires,
P. Li, P.M. Wu, Y.
Bomze, I.V. Borzenets, G. Finkelstein and A.M. Chang,
Physical Review
Letters 107, 137004 (2011).
Connecting the Nanodots: Programmable Nanofabrication of Fused
Metal Shapes on DNA Templates,
M. Pilo-Pais, S. Goldberg, E. Samano,
T.H. LaBean and G. Finkelstein,
Nano Letters 11, p. 3489-3492 (2011).
Self-assembling DNA templates for programmed artificial
biomineralization,
E.C. Samano, M. Pilo-Pais, S. Goldberg, B.N. Vogen,
G. Finkelstein and T.H. LaBean,
Soft Matter 7, p. 3240 (2011).
Two-stage
Kondo effect and Kondo-box level spectroscopy in a carbon nanotube,
Yu. Bomze, I. Borzenets, H. Mebrahtu, A. Makarovski, and G. Finkelstein
Physical Review B 82, p. 161411R (2010).
Resonant
tunneling in a dissipative environment,
Yu. Bomze, H. Mebrahtu, I. Borzenets, A. Makarovski, and G. Finkelstein
Physical Review B 79, p. 241402R (2009).
Dependence
of transport through carbon nanotubes on local Coulomb potential,
A.A. Zhukov and G. Finkelstein
Letters to the Journal of Expt. and Theor. Physic. 236
(2009).
Chemical
patterning of silicon dioxide substrates for
selective deposition of gold nanoparticles and fabrication of
single-electron transistors,
U.C. Coskun, H. Mebrahtu, P. Huang, J. Huang, A. Biasco, A. Makarovski,
A. Lazarides, T. LaBean, and G. Finkelstein,
Applied Physics Letters 93,
p. 123101 (2008).
Low-Temperature
Conductive Tip Atomic Force Microscope for Carbon Nanotube Probing and
Manipulation,
M. Prior, A. Makarovski and G. Finkelstein,
Appl. Phys. Lett. 91, 053112
(2007).
Optimized
fabrication and electrical analysis of silver nanowires templated on
DNA molecules,
S.H. Park, M.W. Prior, T.H. LaBean and G. Finkelstein,
Applied Physics Letters 89, p.
033901 (2006).
Persistent
orbital degeneracy in carbon nanotubes,
A. Makarovski, L. An, J. Liu and G. Finkelstein,
Physical Review B 74, 155431 (2006).
Three-Helix
Bundle DNA Tiles Self-Assemble into 2D Lattice or 1D Templates for
Silver Nanowires,
S.H. Park, R. Barish, H. Li, J.H. Reif, G. Finkelstein, H. Yan, and
T.H. LaBean,
Nano Letters 5, p. 693 (2005).
Electronic
nanostructures templated on self-assembled DNA scaffolds.
S.H. Park, H. Yan, J.H. Reif, T.H. LaBean, and G. Finkelstein,
Nanotechnology 15, p.
S525-S527 (2004).
DNA-Templated
Self-Assembly of Protein Arrays and Highly Conductive Nanowires.
H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean,
Science 301, p. 1882 (2003).
Efficient
CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon
Monoxide Precursor.
B. Zheng, C. Lu, G.Gu, A. Makarovski, G. Finkelstein and J. Liu,
Nano Letters 2, p. 895-898
(2002).
Modeling
subsurface charge accumulation images of a quantum Hall liquid.
S.H. Tessmer, G. Finkelstein, P.I. Glicofridis, and R.C. Ashoori,
Physical Review B 66, p. 125308
(2002).
Determination
of the Resistance across Incompressible Strips through Imaging of
Charge
Motion.
P.I. Glicofridis, G. Finkelstein, R.C. Ashoori and M. Shayegan,
Physical Review B 65, p.
R121312 (2002).
Fate
of Spin Doublets in Quantum Dot with Many Interacting Electrons.
M. Brodsky, G. Finkelstein, R.C. Ashoori, L.N. Pfeiffer and K.W.
West, unpublished.
Topographic
Mapping of the Quantum Hall Liquid Using a Few-Electron Bubble.
G. Finkelstein, P.I. Glicofridis, R.C. Ashoori and M. Shayegan,
Science 289, p. 90 (2000).
Imaging
of Low- Compressibility Strips in the Quantum Hall Liquid.
G. Finkelstein, P.I. Glicofridis, S.H. Tessmer, R.C. Ashoori and M. R.
Melloch,
Physical Review B 61, p. R16323
(2000).
Imaging the Low Compressibility Strips Formed by the Quantum
Hall Liquid in a Smooth Potential,
G. Finkelstein, P.I. Glicofridis, S.H. Tessmer, R.C. Ashoori and M.R.
Melloch,
Physica E 6, p. 251
(2000).
Comparative
study of the negatively and positively charged excitons in GaAs quantum
wells
S. Glasberg, G. Finkelstein, H. Shtrikman and I. Bar-Joseph,
Physical Review B 59, p. R10425
(1999).
V. Ciulin, J-D. Ganiere, S. Haacke, B. Deveaud, G. Finkelstein, V. Umansky and I. Bar-Joseph, Physica B256-258, p. 466 (1998).
Charged
exciton dynamics in GaAs quantum wells
G. Finkelstein, V. Umansky, I. Bar-Joseph, V. Ciulin, S. Haacke, J.-D.
Ganier and B. Deveaud,
Physical Review B 58, p. 12637 (1998).
G. Finkelstein, H. Shtrikman and I. Bar-Joseph, Physica B249-251, p. 575 (1998).
G. Finkelstein, H. Shtrikman and I. Bar-Joseph, Physics-Uspekhi 41, p. 112 (1998).
I. Bar-Joseph and G. Finkelstein, Phys. Conf. Ser. 155, p. 711 (1997).
Mechanism
of shakeup processes in the photoluminescence of a two-dimensional
electron
gas at high magnetic fields
G. Finkelstein, H. Shtrikman and I. Bar-Joseph,
Physical Review B 56, p. 10326 (1997).
G. Finkelstein, H. Shtrikman and I. Bar-Joseph, The Physics of Semiconductors, p. 2331, World Scientific (1996).
G. Finkelstein, H. Shtrikman and I. Bar-Joseph, The Physics of Semiconductors, p. 2135, World Scientific (1996).
Shakeup
processes in the recombination spectra of negatively charged excitons
G. Finkelstein, H. Shtrikman and I. Bar-Joseph,
Physical Review B 53, p. 12593 (1996).
Negatively
and positively charged excitons in GaAs/AlGaAs quantum wells
G. Finkelstein, H. Shtrikman and I. Bar-Joseph,
Physical Review B 53, p. R1709
(1996).
G. Finkelstein, H. Shtrikman and I. Bar-Joseph, Surface Science 361/362, p. 357 (1996).
G. Finkelstein, H. Shtrikman and I. Bar-Joseph, The Physics of Semiconductors, p. 1428, World Scientific (1995).
Optical
Spectroscopy of a Two-dimensional Electron Gas Near the Metal-Insulator
Transition
G. Finkelstein, H. Shtrikman and I. Bar-Joseph,
Physical Review Letters 74, p.
976 (1995).
G. Finkelstein and I. Bar-Joseph, Il Nouvo Cimento 17D, p. 1239 (1995).
I. Bar-Joseph, G. Finkelstein, S. Bar-Ad, H. Shtrikman and Y. Levinson, Phys. Stat. Sol. B188, p. 457 (1995).Biexcitons
in short-pulse optical experiments in strong magnetic fields in GaAs
quantum wells
S. Bar-Ad, I. Bar-Joseph, G. Finkelstein and Y. Levinson,
Physical Review B 50, p. 18375
(1994).
Biexcitonic
effects in transient nonlinear optical experiments in quantum wells
G. Finkelstein, S. Bar-Ad, O. Carmel, I. Bar-Joseph and Y. Levinson,
Physical Review B 47, p. 12964 (1993).
Main results
before Duke
|
Graduate studies (Weizmann) |